Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458286

RESUMO

In this paper we investigate polyelectrolyte complexes of sodium alginate (Alg) and chitin nanocrystals (ChNC). Formation, stability and transport properties of sunflower oil-in-water emulsions stabilized by ChNC-Alg complex were studied using dynamic light scattering (DLS), laser Doppler electrophoresis, optical microscopy, potentiometric titration, rheology and simulated digestion. It has been established that during emulsions formation, the ChNC-Alg complex is rearranged at the interface and the formation of a two-layer coating of the droplet occurs. Stabilized O/W emulsions are stable during storage, in the pH range 2-9 and centrifugal acceleration up to 2000 RCF. Presence of Ca2+ and Na+ ions in the range up to 150 mM has virtually no effect on the droplet size. Inclusion of 5 wt% Alg in the ChNC-based emulsion stabilizer system leads to a drop in Gibbs adsorption >16 times compared to the ChNC-stabilized emulsion, increase in viscosity and rheopexy index of the systems. We found that chemical properties of colloidal phase surface and rheological properties of emulsions stabilized by ChNC-Alg are mostly dependent on the droplet size, not the type of oil as a result of a comparative study of sunflower oil/liquid paraffin oil. Emulsion drops of an optimized composition are stable in the upper parts of the model gastrointestinal tract system and transport vitamin D3 to the small intestine without significant losses. The bioavailability of vitamin D3 in emulsions stabilized with the ChNC-Alg complex is higher than for emulsions stabilized with ChNC alone.


Assuntos
Quitina , Nanopartículas , Emulsões/química , Quitina/química , Disponibilidade Biológica , Colecalciferol , Óleo de Girassol , Reologia , Tamanho da Partícula , Água/química
2.
Carbohydr Polym ; 319: 121169, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567709

RESUMO

SH-containing polymers and nanoparticles are a significant direction in the creation of novel materials. The aim of this work is the synthesis of cellulose nanocrystals (CNC) with a surface modified by tosyl functions (CNC-Ts) and their further modification into SH-containing nanocrystals (CNC-SH). CNC-Ts were synthesized in an aqueous-organic emulsion from never-dried particles, while maintaining the size and supramolecular structure of CNC; the content of Ts-functions is up to 2.5 mmol·g-1. Structure of the derivatives was analyzed by TEM, XRD, CP/MAS 13C NMR and FTIR spectroscopies. Nucleophilic substitution and hydrolysis of the obtained thioisouronium salts leads to the production of CNC-SH. To quantify SH-groups we used elemental analysis, potentiometric titration and Folin-Ciocalteu and Ellman's reagents. It is shown that SH-groups on the surface are partially oxidized and are involved in a dense network of hydrogen bonds. Rheological properties of CNC-SH hydrosols are close to those of CNC, addition of H2O2 at acidic pH leads to an increase in viscosity of the system; H2O2 added at neutral pH causes opposite effect - viscosity decreases. CNC-SH have a high capacity for sorption of Cr(VI) in acidic environments and exhibit photoreductive properties under UV irradiation.

3.
Langmuir ; 39(33): 11769-11781, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556390

RESUMO

In this work, we studied for the first time the formation of olive oil emulsions in water stabilized by plate-like nanocrystals with the supramolecular structure of cellulose II (pCNC). Effects of storage, pCNC concentration, and NaCl on the stability and properties of Pickering emulsions, including the creaming index, droplet size, zeta potential, acid-base surface properties, and rheology, were studied. A significant influence of the shape of nanoparticles (compared to the classical rod-like shape) on the stability parameters and rheological characteristics of emulsions is shown. Plate-like cellulose nanocrystals at a concentration of 16 g/L are able to form delamination-resistant emulsions without added electrolytes. The viscosity of pCNC-stabilized emulsions tends to decrease with increasing electrolyte concentration in the system, which is not characteristic of rod-like CNC-stabilized emulsions. This effect in pCNC-stabilized emulsions assumedly can be associated both with weak mechanical engagement between drops due to the shape of stabilizer particles and with an insignificant participation of background electrolyte cations in the formation of interdroplet interactions. Therefore, the resulting aggregates are unstable and easily destroyed, even under weak mechanical stress. As a consequence, the acid-base properties of the pCNC surface are practically independent of the emulsion preparation method (with or without electrolyte) as well as the concentration of the background electrolyte. The reduced viscosity of pCNC-stabilized emulsions in the presence of an electrolyte, coupled with the absence of acute toxicity, allows us to recommend them as a convenient oral delivery system for fat-soluble, biologically active substances. Our emulsions carrying donepezil (an anti-Alzheimer drug) showed better performance than a solution of donepezil hydrochloride in preventing memory impairment tested on laboratory mice.


Assuntos
Celulose , Nanopartículas , Animais , Camundongos , Emulsões/química , Celulose/química , Propriedades de Superfície , Nanopartículas/química , Água/química
4.
ACS Appl Bio Mater ; 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36018793

RESUMO

Vitamin D3 deficiency is a major public health problem worldwide, and standard cholecalciferol formulations provide poor absorbability of the vitamin. Several biphasic formulas have been proposed to overcome the disadvantages in which Pickering emulsions stand out in particular. This paper describes olive oil-in-water Pickering emulsions stabilized by pseudoboehmite (AlOOH), cellulose nanocrystals (CNC), and their heterocoagulates. Colloidal properties were assessed by laser Doppler microelectrophoresis, potentiometric titration, and rheology. It was shown that the heterocoagulation of CNC and AlOOH led to a drastic change in surface properties (ζ-potential, pKa, and number of active centers), which promoted the formation of more stable emulsions with the smallest size of droplets and the highest viscosity among the studied samples. Simulated digestion studies showed the targeted release in the small intestine medium where cholecalciferol should be delivered. High-performance liquid chromatography showed the efficient encapsulation of cholecalciferol in emulsions (86% of initial concentration). Oral administration to laboratory mice of initial nanoparticles and emulsions stabilized by them showed nontoxicity for all of the components, and they were estimated to be class V materials. The proposed emulsions have great potential as targeted delivery systems of lipophilic drugs.

5.
Carbohydr Polym ; 284: 119162, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287895

RESUMO

Pickering emulsions are of interest in medicament transport systems. The properties of emulsions are influenced by the type of oil and the surface structure of nanoparticles-stabilizers. The process of formation of o/w emulsions of olive oil stabilized by chitin nanocrystals was investigated, their stability under the influence of physical factors, rheological characteristics, acute toxicity after oral administration, stability under the conditions of a model of the gastrointestinal tract, and their potential for oral transport of vitamin D3 were analyzed. Physically stable emulsions were obtained at a stabilizer concentration of 3.6 g/l. The addition of electrolyte leads to a substantial reduction in the average size of microdroplets. The resulting emulsions have rheopexy properties and the rheopexy index increases at 37 °C. Emulsions are classified as non-toxic when taken orally, physically stable in the upper digestive system, and capable of efficiently transporting vitamin D3 with a full release in the small intestine.


Assuntos
Quitina , Nanopartículas , Quitina/química , Colecalciferol/química , Emulsões/química , Nanopartículas/química , Nanopartículas/toxicidade , Azeite de Oliva , Tamanho da Partícula , Água/química
6.
Soft Matter ; 18(11): 2222-2233, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35229856

RESUMO

Cell viability is the primary integrative parameter used for various purposes, particularly when fabricating tissue equivalents (e.g., using bioprinting or scaffolding techniques), optimizing conditions to cultivate cells, testing chemicals, drugs, and biomaterials, etc. Most of the conventional methods were originally designed for a monolayer (2D) culture; however, 2D approaches fail to adequately assess a tissue-engineered construct's viability and drug effects and recapitulate the host-pathogen interactions and infectivity. This study aims at revealing the influence of particular 3D cell systems' parameters such as the components' concentration, gel thickness, cell density, etc. on the cell viability and applicability of standard assays. Here, we present an approach to achieving adequate and reproducible results on the cell viability in 3D collagen- and fibrin-based systems using the Live/Dead, AlamarBlue, and PicoGreen assays. Our results have demonstrated that a routine precise analysis of 3D systems should be performed using a combination of at least three methods based on different cell properties, e.g. the metabolic activity, proliferative capacity, morphology, etc.


Assuntos
Bioimpressão , Materiais Biocompatíveis/farmacologia , Bioimpressão/métodos , Sobrevivência Celular , Impressão Tridimensional , Engenharia Tecidual , Tecidos Suporte/química
7.
Int J Biol Macromol ; 190: 533-542, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509517

RESUMO

In this study, electrospray deposition has been used as a method to prepare lignin submicron spherical particles. Regularities of electrospraying of lignin solutions in DMSO were revealed. The influence of voltage, distance between electrodes, feed rate, temperature and concentration of lignin solution on the morphology, size and polydispersity of the obtained particles was determined. SEM, IR, TG-DSC, elemental analysis, dynamic light scattering, Zeta potential and nitrogen sorption were used to characterize the particles and to determine their properties. The aqueous colloidal solutions of the submicron particles of lignins from various plant sources were stabilized by preparing the lignin/polyvinylpyrrolidone polymeric complexes.


Assuntos
Coloides/química , Eletroquímica/métodos , Lignina/química , Povidona/química , Água/química , Betula , Varredura Diferencial de Calorimetria , Eletricidade , Elementos Químicos , Lignina/ultraestrutura , Tamanho da Partícula , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termogravimetria
8.
Carbohydr Polym ; 247: 116704, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829832

RESUMO

There exists a high demand for simple and affordable blood glucose monitoring methods. For this purpose, new generations of biosensors are being developed for possible in vivo or dermal use. We present (non)sulphated cellulose nanocrystal/magnetite thin films to act as dermal and oral glucose biosensors. The biocompatible (N-CNC)-Fe3O4 and (S-CNC)-Fe3O4 hybrid systems exhibit peroxidase-like activity, indicated by an almost instant color change when in the presence of glucose and ABTS. Both types of biosensors detect glucose concentrations as low as 5 mM (which corresponds to the level of glucose in biological fluids), with (S-CNC)-Fe3O4 being 1.5 - 2 times as sensitive as (N-CNC)-Fe3O4. Hybrid catalytic activity is more pronounced at room temperature and in acidic environments. The hybrids can therefore be used to determine glucose levels by using sweat and saliva - non-blood bodily secretions which tend to be slightly to moderately acidic and have relatively low glucose levels.


Assuntos
Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/métodos , Celulose/química , Óxido Ferroso-Férrico/química , Glucose/análise , Nanopartículas/química , Oxirredução
9.
Langmuir ; 36(16): 4405-4415, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32243164

RESUMO

This paper presents sols of uncoated and citric acid-coated Fe3O4 nanoparticles obtained by a combination of coprecipitation and sonochemistry methods. A stable concentrated CA-Fe3O4 sol synthesized by a combination of coprecipitation with an inconvenient Fe2+/Fe3+ ratio, modification with citric acid and US treatment was obtained for the first time. A comparative analysis of the composition and morphology of nanoparticles was performed. The sols are oppositely charged and behave as a typical ferrofluid. The citric acid-modified sol is aggregatively stable over wider ranges of pH and electrolyte concentration, but it becomes less stable with the temperature increase. DLVO calculations showed that steric repulsion forces are a vital factor contributing to increased aggregative stability in a modified Fe3O4 sol. The experiments have revealed the magneto-optical effect in a modified Fe3O4 sol with an electrolyte concentration of 0.025-0.075 M caused by a high potential barrier and a deep secondary minimum in pairwise interaction curves. The "pK spectroscopy" mathematical model to describe the potentiometric curves of synthesized magnetite sols was used for the first time. According to potentiometric titration, the ions of the electrolyte practically do not contribute to formation of a surface charge in modified Fe3O4 with a change in pH due to blocking the magnetite surface by citric acid molecules. Drosophila melanogaster was used as a model to show that Fe3O4 in chronic exposure has a low toxic effect.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Nanopartículas de Magnetita/química , Soluções/química , Animais , Ácido Cítrico/química , Ácido Cítrico/toxicidade , Feminino , Fenômenos Magnéticos , Nanopartículas de Magnetita/toxicidade , Masculino , Fenômenos Ópticos , Tamanho da Partícula , Soluções/toxicidade
10.
Heliyon ; 6(12): e05825, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33426333

RESUMO

In this work, AlOOH-Fe3O4 powder nanocomposites for Cr(VI) adsorption were obtained for the first time using oppositely charged boehmite and citric acid modified magnetite sols. The process of heteroaggregation of oppositely charged AlOOH and Fe3O4 nanoparticles was also studied as one of the stages in the preparation of adsorption active material. Сomposition, surface area, porous structure, thermal and surface properties, adsorption efficiency, and regenerability of nanocomposites were investigated using a wide range of analytical methods. It is noted that a low content of magnetite (2 wt.%) in the AlOOH-Fe3O4 composite promotes an increase in the surface area, weakly affects the Cr(VI) adsorption capacity, and imparts magnetic properties to the composite. Low cost, simplicity of preparation, high Cr(VI) adsorption capacity (up to 21 mg/g), and stability in cyclic use are the advantages of the obtained nanocomposites in comparison with similar systems. They can easily be separated from the purified liquid using a permanent magnet due to their magnetic properties.

11.
RSC Adv ; 10(58): 35031-35038, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515643

RESUMO

Both cellulose nanocrystals and gold nanoparticles show immense potential for biological and chemical applications. Gold nanoparticles, which tend to aggregate, are hybridized with cellulose nanocrystals to form stable inorganic-organic hybrids in which nanocellulose acts as a green supporting material for the catalytically active gold nanoparticles. A green synthesis approach was taken, and hydrothermal treatment was used to reduce electrostatic repulsion between the gold nanoparticles and the cellulose nanocrystals to promote heteroaggregation instead of homoaggregation. AFM analysis showed hybrid films to be hygroscopic, suggesting that they would respond to changes in humidity. Laser diffraction and fluorescence quenching were used to determine how hybrid films respond to changes in humidity. Hybrid films were found to respond to changes in humidity quickly, reversibly, and autonomously, making them ideal for use as or in a humidity sensor. Gold nanoparticles were shown to enhance the hybrid response to ambient moisture, causing them to show a linear dependence on changes in humidity, making the hybrid controllable, highly sensitive, and a viable prospective material for humidity sensing applications.

12.
Carbohydr Polym ; 200: 162-172, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177154

RESUMO

One possible way of obtaining cellulose nanocrystals and aqueous sols with novel properties is based on modification of supramolecular structure of the polysaccharide. This modification involves rearrangements of hydrogen bonds and has an effect on polymer morphology, formation of surface reactive sites and interface interactions. Disc-like nanocrystals of cellulose II were prepared by solvolysis of regenerated cellulose in acetic acid/octanol medium in the presence of 0.4 mol% of phosphotungstic acid. The starting cellulose samples were dissolved and regenerated in the NaOH/thiourea system. Cellulose nanocrystals were studied by transmission electron microscopy, atomic force microscopy, dynamic light scattering, FTIR spectroscopy, XRD and thermogravimetric analysis. Colloidal stability of aqueous suspensions of cellulose nanocrystals in the presence of electrolyte (KCl) was studied. Their acid-base properties were revealed using potentiometric titration. The influence of electrolyte concentration on dynamic viscosity of the obtained hydrosols and their ability to show birefringence was established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...